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A Non-Linear Approach to Spacecraft Formation Control in the

Vicinity of a Collinear Libration Point

Richard J. Luquette ° and Robert M. Sanner °*

Abstract

An expanding interest in mission design strategies that exploit libration

point regions demands the continued development of enhanced,

efficient, control algorithms for station-keeping and formation

maintenance. This paper discusses the development of a non-linear,
formation maintenance, control algorithm for trajectories in the vicinity

of a libration point. However, the formulation holds for any trajectory
governed by the equations of motion for the restricted three body

problem. The control law guarantees exponential convergence, based

on a Lyaponov analysis. FreeFlyer® and MATLAB® provide the

simulation environment for controller performance evaluation. The
simulation, modeled after the MAXIM Pathfinder mission, maintains

the relative position of a "follower" spacecraft with respect to a
"leader" spacecraft, stationed near the L2 libration point in the Sun-

Earth system. Evaluation metrics are fuel usage and tracking accuracy.

INTRODUCTION

The restricted-three body problem examines the behavior of an infinitesimal mass in the combined
gravitational field of two finite masses rotating in an orbit about their common center of mass. Research on

this problem began prior to 1772, the year Lagrange published a set of particular solutions known as the
Lagrange or libration points. Libration points, defined within a rotating two body system, represent
locations within the rotating frame at which the dynamical forces due to gravity and rotation are

neutralized. The equilibrium points are grouped in a set of three collinear points, referred to as L1, L2 and
L3; and a set of two triangular points, L4 and L5. With our emerging capability to implement space-based

missions, a growing research interest is focused on methods for exploiting the dynamic environment in the
vicinity of these points. Some of these missions involve satellite formations. The MAXIM mission and its

precursor, MAXIM Pathfinder, fall into this category. Missions of this type carry a requirement for high
precision formation control. With this motivation this paper extends the work presented in reference 1,

through formulation of a nonlinear control algorithm to achieve this goal.
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The control algorithm is based on an Euler-Lagrange (Hamiltonian) formulation of the system dynamics.
Ref. 2 details the development of the strategy along with a discussion and proofs of the stability and

convergence properties. Ref. 4 applies this formulation to the problem of formation control in the context

of the two-body problem. With a different set of dynamics, ref. 1 demonstrates the feasibility of employing
this method for trajectory maintenance in the context of the restricted three-body problem. Although this

trajectory control strategy is applicable to the problem of formation maintenance, it is deemed impractical

due to its dependence on knowledge of the absolute spacecraft position in the rotating reference frame.
This paper proposes a preferred strategy, which computes the required control based only on the relative

state (position and motion) between the two spacecraft. As before, the control law is exponentially stable,
and in the absence of noise, yields zero tracking error.

THEORY

The dynamics (1) and kinematics (2) for most physical systems can be expressed in the Hamiltonian (or
Euler-Lagrange) form I'z.

H(q) * _,+ C(q,v) * v + E(q,v) = u (1)

/l = J(q) * v (2)

Where:

q - Configuration Variables

v- Velocity Variables

H(q) =H(q) T > 0,Vq, v

C(q, v) is defined such that H(q)- 2 *C(q,v)is skew for all q, v.

For the case that cl =v, i.e. J(q) = I, the dynamic Eq. (1) becomes:

H(q) * ci + C(q, Cl)* Cl+ E(q, Cl)= u (3)

The control law

u(t) = H(q) * ii, + C(q, _1)* q, + E(q, (1)- K, *s(t) (4)

provides globally stable tracking of a desired trajectory, qd(t), such that the tracking error,

e(t) = q(t) - qd(t), exponentially decays to zero.

Note: Cl,(t) = Cl,(t)- A *e(t), A=Ar>0, and s(t) = _(t) + A * e(t) = /l(t) - (l,(t) (5)

In the presence of dynamic uncertainty with a linear form

H(q) * ii + C(q,_l) * q + E(q,cl) = Y(q,(l,q,,cl, ) * a,

where Y(q,(l,q,,cl, ) is known, a is a constant, unknown, vector.

perfect tracking is achieved with the following control law and adaptive rule z

u = Y(q, cl,q,,cl)*, a -K, *s, (6)

with _=-F*Y(q, cl, q,,(l)*S, U=F r >0
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THE RESTRICTED-THREE BODY PROBLEM

The restricted-three body problem considers the dynamics of a small mass (spacecraft) under the

gravitational influence of two primary masses (rotating about their common, inertially-fixed, center of
mass). The spacecraft (S/C) dynamics (per unit mass) in inertial coordinates are given by:

I J'_,_=-GM,* 'r,./llr,,ll'- GM,* r,./llr,.ll,÷'r, (7)

where:

GMi

Iris
Ir_

Ifd

= Gravitational Parameter of Mass i

= Position of S/C with respect to Mass i
= Position of S/C

= Unmodeled Disturbance Forces

Alternatively, the dynamics are expressed in a rotating frame defined by the motion of the smaller primary.

"u = A S * 'u = H * 'i: + C * '/" + E('r) + A_ * 'f. (8)

where:

Ir = A_r * r r, r r represents the position vector in the rotating coordinates

A, = [[,],1_], [ ='r,/,,,11,,_ = ('r, x,v,)/ll(,r,x,v:)L] =_×i

r,, 'v2 represent the inertial position and velocity of the smaller primary relative to the center of the rotating frame.

H =I,

C=2*A r *.4,, =2*Ar_ *A_, * f_ =2" f_h-

I 3 ! S

E(" r)= A:* (A_ * 'r + GM_* r,,/llr,,ll' +Gr,l, * r,./[[r,.ll,)

.Q =Skew{(' r× =v)/llrtl, _

Note: [H(t) - 2 * C(q,¢l)] = 2 * f_, which is skew symmetric.

It is important to note that the motion of the two primary masses define A_r, and it's derivatives. Hence, the

behavior of Au is generally well known and predictable for trajectories within our solar system.

DYNAMICS OF RELATIVE MOTION

With dynamics defined by Eqs. 7 or 8, implementation of an adaptive control strategy, Eq. (6), provides

perfect tracking of a predefined trajectory for station-keeping within the assumed constraintsk The method
equally applies to the problem of formation maintenance, but requires knowledge of the spacecraft's

position within the rotating frame. Practical considerations preference a strategy based on the relative
motion between two spacecraft. For the simple case of a leader/follower formation, Eq. (7) yields the

relative dynamics between the two spacecraft

I _ 1 3'_ =-GM,*( r,,/llr,,ll' - ,,dllr,dl,)- GM,*<'r-/ll'-II_'- ',,/11"_H,)'+ 'f, + (u, - uL) (9)

where the subscript 'L' refers to the leader spacecraft, "F' to the follower spacecraft, and Ix = Irr- IrL.

The disturbance force, symbolically unchanged, now represents the disturbance effect on the relative
motion of the two spacecraft. In rotational coordinates the dynamics assume a form similar to Eq. (8).
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However,thetransformationis unnecessary,sinceboththemeasurementsandthedesiredrelative
trajectoryarereadilyresolvedininertialspace.

ManipulatingthetermsinEq.(9)resultsintheequivalentexpression

I_ J J ,I * * -j -:l=--(GM,/Sr,,_, +GM,/_r,.,[,) x-GM, 'r,L (_r,,8, qr, LII,)-GM,*'rn_(Sr,,]: ' -_rn.]:')+ 'f, +(u,-u L) (10)

The first term denotes a differential acceleration, oriented along the spacecraft separation vector. The

second and third terms represent differential accelerations along the separation vectors between the

primaries and the leader spacecraft. For a formation requirement with a constant x, the first term will
remain inertially fixed, possibly varying in magnitude. For slow moving trajectories in the rotating frame

of the three-body problem, this magnitude is considered constant over short time intervals. Additionally,
the second and third terms are considered fixed in the rotating coordinate frame. This observation suggests

the gravitational influence of the primaries are represented as:

'fa = F * a, where F = [A_ il_], and ais slowly varying, possibly constant.

CONTROL LAW DESIGN

The combined results of the two preceding sections generate the control law.

u, =% _-GM,* ¢'r,,/llr,,ll:- 'r./llr, LI1:)+GM,*C'r_/llr,,ll',-lr_-/llr_ It',)+ 'f,+u,- K,*s (11)
with x =xa-A*(x-x d), s=(x-xd) +A*(x-x d)

Here Xfd is an unknown force. Therefore, implementation requires an adaptive strategy to estimate the

disturbance contribution. Based on the discussion in the previous section, with a "slow" moving trajectory

the gravitational influence of the primaries assumes a linear form. This suggests modeling the disturbance
in a similar fashion, allowing an adaptive estimate of Xfdin the control algorithm.

, ' ' ' rJllr._ll,) + % _, suF:u L4.I _l_r dI-G_!/Ii *( ',./ll',.ll, -- r,dll.,_ll,)+CM,*(',,,/llr.ll:-' , - _ •
with 'f, = F * fi, _ = -_t * F T * s, where, ¢t > 0, F = [A_, i l_ ]

(12)

Note: computation of the desired control requires knowledge of the position of the two spacecraft

referenced to the primary masses. In practice these vectors are estimated, based on various measurements.
The estimation error appears as an unmodeled disturbance, which will not conform to the structure of tfd,

defined in Eq. (12). However, the gravitational influence of the primaries has the same linear form as the
adaptive rule by design. Therefore, tlae suggested approach estimates the contribution of all gravitational
influences and other disturbances.

u_ =u L +' _, + F*_-K,*s

with _i = -a * F T * s, where, a > 0, F = [A,, i I, ]
(13)

Implementation of Eq. (13) requires only local measurement of the relative position and motion between

the two spacecraft. As a practical difficulty, the follower spacecraft is required to mirror any control effort
imparted to the lead spacecraft. Careful mission planning avoids this situation by limiting the leader

spacecraft to infrequent, station-keeping maneuvers, so m.--0 during precision formation maneuvers.
Interchangeability of the leader and follower roles facilitates flexibility in fuel management and station-

keeping strategies. Finally, since the gravitational influence from the primaries dominate the disturbance,
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the gravitytermsin Eq. (12)canbecomputedto establisha boundon theestimateddisturbance,
^

'f, = F*_i , in Eq. (13), thus limiting the potential for parameter drift.

SIMULATION

Implementation of the proposed adaptive control law, Eq. (13), is simulated using FreeFlyer® interfaced

with MATLAB®. FreeFlyer® supplies the dynamics model and propagation tool. MATLAB® provides

the computational tools to determine the control effort at each time step. Additionally, MATLAB® serves

to capture and analyze the simulation data.

The design of the simulation scenario is
based on the MAXIM Pathfinder mission 3,

shown in Figure I. The mission consists of a

two spacecraft formation, designed to
demonstrate the feasibility of space-based

X-ray interferometry for astronomical

applications. Proposals for a nominal
mission trajectory include both an orbit about

L2 in the Earth-Sun system, and an Earth
trailing, drift away orbit. The simulations

model both options.

2_5m

C_ries:

Optics SpacecraR
X-r _ty I.aterfer om eter s

Finder X-ray Telescopes

2 Visible Light Interferom et_ s

Laser Ranging System

Size: 2.Sx2.Sx10m

Pitch&Yaw Stability: 3x10"4 arc_¢
Pitch&Yaw Knowledge 3x10 -s arcsec
Roll Stability: 20 arcsec
Position Stability:. ---

Perturbations include the gravitational

influence of the Sun and all the planets, and
solar pressure. The Earth's gravitational
field model includes zonal and tesseral terms

up to J21. The simulation period is 10 days,
starting on May 1, 2001. The integration

step size is 30 seconds. Each case employs
the same gains: Kd = .05, A = .01,
and ct = 10"'4. The gains, selected by trial

and error, are not optimize for system

performance. Thrusters are assumed to have
full throttling and pointing capability.

The simulation for each case is divided into

three phases. In phase I the spacecraft are

mechanically linked with the transfer into the

.q

lm

Detector Spacecraft
Carries: X-ray Detector Array

Laser Retro Rdlectors

Precision Thrusters

Size: lxlxlm
Pitch&Yaw Stability:. 20 arcx_

Rail Stability:. 20 arcsec

Lateral Stability: 5ram

Lateral Knowledge: _ microns

iFocal Stability: 10 meters

Figure 1. MAXIM Pathfinder Design

final mission trajectory completed. The mechanical link is modeled by initializing both spacecraft with the
same position/velocity and commanding a zero separation distance. Phase II models the transition from

initial mechanical separation to a nominal formation configuration. Separation is accomplished with a
constant continuous thrust applied to the Follower spacecraft. During the first half of the maneuver, the

Follower accelerates away from the Leader spacecraft. At the halfway point the thrust is reversed,
decelerating the Follower, to reach the mission formation configuration with zero relative velocity to the

Leader spacecraft. During Phase III the Follower is commanded to maintain a constant, 450 kilometer,
separation with the Leader spacecraft. The Leader spacecraft drifts under the influence of environmental

forces with no applied external thrust. For the cases presented the separation is maintained along the
inertial x-axis. Simulations with other orientations of the separation vector produced similar results.

Case 1

The spacecraft are stationed in a Lissajous orbit about the L2 point of the Earth-Sun system. The initial
state vector was obtained from a simulation for the Mircowave Anisotrophy Probe (MAP) mission. The

relative position between the two spacecraft is shown in Figure 2. Phase II starts 6 hours into the
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Figure 2. Case I- Relative Position of
Follower Spacecraft to Leader in
Inertial Coordinates
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Figure 3. Case 1 - Error Magnitude and
Control Effort

simulation, and concludes at the end of day 1. Figure
3 provides the magnitude of the position error and the
control thrust. The tracking error is effectively zero,
10 -7 meters, which reflects the limit of the simulator's

machine precision.

As seen in Figure 4, the adaptation law converges to a

nearly constant estimate of the vector, _i. Recall, this

vector is expected to vary slowly with time.

Transients during the separation maneuver are

expected, since the differential gravitational force on

the spacecraft will increase with the separation

distance. Although the tracking error performance

degrades during separation, it remains within a

centimeter of the desired trajectory.

Case 2

For this case the spacecraft initial state vectors are set
to the values of the Earth's position and velocity 5
days prior to the simulation start time, based on
planetary ephemeris data. Thus, the spacecraft
trajectory lags the motion of the Earth by
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Figure 4. Case 1 - Time History of Adaptation
Vector, _, (km/sec z)
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Figure 5. Case 2- Relative Position of Follower

Spacecraft to Leader in Inertial Coordinates

approximately 5 degrees. A slight reduction in the
velocity was required to cause a "drift away" motion.

Simulation results are shown in Figures 5, 6 and 7. As
in Case 1, the control law generates perfect tracking

within the limit of machine precision. Compared to
case 1, it appears less control effort is required to

maintain the formation, (1.9e-7 versus 2.5e-7
meters/secZ). Hence, fuel economy favors Case 2. As

with Case 1, the adaptation vector, _i,assumes a fairly

constant value with a slow variation after the separation
transient. Further analysis is required to verify this

result, since the simulation is operating at the limit of

machine precision.

Cases without Adaptation

To assess the effectiveness of adaptation the above cases
were run with h = 0. This reduces the control

algorithm to a simple linear PD controller for the Phase

III sequence with _, = 0. The results are displayed in

Figures 8 and 9. In both cases the control effort remains

essentially unchanged by the lack of adaptation. This is
expected. However, the tracking performance degrades,

maintaining millimeter accuracy. With a further loss of

Figure 6. Case 2 - Error Magnitude
and Control Effort
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Figure 9. Case 2 without Adaptation - Error

Magnitude and Control Effort

performance expected from noise and other disturbances, the adaptive approach is required to satisfy

mission requirements.

Conclusion

Adaptive nonlinear control is an effective strategy for maintaining a spacecraft formation with zero
tracking error. Implementation of the control only requires measurement of the relative position and

velocity of the two spacecraft, reducing the potential sources of measurement errors. The adaptation
mechanism effectively compensates for all environmental forces modeled in the simulation.

The simulation does not consider noise sources, such as those associated with measurement error or

actuator performance. Further, this strategy is limited to position and velocity control. Missions, such as

MAXIM Pathfinder, require simultaneous control of relative position and attitude. Typically, for the case
of a single spacecraft translation and attitude maneuvers are coordinated, although control system designs
treat the dynamics as uncoupled. For the MAXIM Pathfinder, and similar missions, the dynamics are

coupled under assumed constant thrust, requiring a coupled, six-degree of freedom (6DOF) control

strategy.

The following items are considered for future work:

• Include robust features to ensure desired performance under various disturbances.

• Design nonlinear, 6DOF Control for spacecraft position and attitude to ensure pointing and

position requirements are simultaneously achieved.

• Process measurements with a nonlinear observer, and demonstrate stability of the coupled
observer/controller.

• Employ "Realistic" simulation models for testing algorithms. Include modeling of measurement
error sources, actuator performance, and other effects.
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